Theory of machinery

Chapter four

Acceleration analysis

By
Laith Batarseh

Acceleration analysis

For a known four-bar mechanism, in a given configuration and known velocities, and a given angular acceleration of the crank, α_{2} (say CCW), construct the acceleration polygon. Determine α_{3} and α_{4}.

Acceleration analysis

Solution

For the position vector loop equation:

$$
\mathrm{R}_{A O 2}+\mathrm{R}_{B A}-R_{B O 4}-R_{O 4 O 2}=0--(1)
$$

the velocity equation is

$$
V_{A O 2}+V_{B A}-V_{B O 4}=0-- \text { (2) }
$$

Acceleration analysis

Solution

The acceleration equation is obtained from the time derivative of the velocity equation as:

$$
A_{A}+A_{B A}=A_{B}
$$

Since $R_{A O 2}, R_{B A}$, and $R_{B O 2}$ are moving vectors with constant lengths, their acceleration vectors have normal and tangential components:

$$
\begin{gathered}
\mathbf{A}_{A}^{n}+\mathbf{A}_{A}^{t}+\mathbf{A}_{B A}^{n}+\mathbf{A}_{B A}^{t}-\mathbf{A}_{B}^{n}-\mathbf{A}_{B}^{t}=\mathbf{0} \\
-\omega_{2}^{2} \mathbf{R}_{A O_{2}}+\alpha_{2} \breve{\mathbf{R}}_{A O_{2}}-\omega_{3}^{2} \mathbf{R}_{B A}+\alpha_{3} \breve{\mathbf{R}}_{B A}-\left(-\omega_{4}^{2} \mathbf{R}_{B O_{4}}\right)-\alpha_{4} \breve{\mathbf{R}}_{B O_{4}}=\mathbf{0}
\end{gathered}
$$

Now, $\boldsymbol{\omega} \mathbf{2}, \omega_{\mathbf{3}}, \boldsymbol{\omega}_{\mathbf{4}}$ and $\boldsymbol{\alpha}_{\mathbf{2}}$ are known, so the components $A_{A}^{n}, A_{A}^{t}, A_{B A}^{n}$ and A_{B}^{n} are known and can be drawn directly

Acceleration analysis

Solution

Rearrange the loop equation to be seem as follow

$$
-\omega_{2}^{2} \mathbf{R}_{A O_{2}}+\alpha_{2} \breve{\mathbf{R}}_{A O_{2}}-\omega_{3}^{2} \mathbf{R}_{B A}-\left(-\omega_{4}^{2} \mathbf{R}_{B O_{4}}\right)+\alpha_{3} \breve{\mathbf{R}}_{B A}-\alpha_{4} \breve{\mathbf{R}}_{B O_{4}}=\mathbf{0}
$$

Drawing procedures:

1. Select a point in a convenient position as the reference for zero acceleration. Name this point O_{A} (origin of accelerations).
2. Compute the magnitude of \mathbf{A}_{A}^{n} as $R_{A O_{2}} \omega_{2}^{2}$. From O_{V} construct vector \mathbf{A}_{A}^{n} in the opposite direction of $\mathbf{R}_{A O_{2}}$.
3. Compute the magnitude of \mathbf{A}_{A}^{t} as $R_{A O_{2}} \alpha_{2}$. The direction of \mathbf{A}_{A}^{t} is determined by rotating $\mathbf{R}_{A O_{2}}$ 90° in the direction of α_{2}. Add this vector to \mathbf{A}_{A}^{n}.
 Note that the sum of \mathbf{A}_{A}^{n} and \mathbf{A}_{A}^{t} is \mathbf{A}_{A}.

Acceleration analysis

Solution

3. Compute the magnitude of $\mathbf{A}_{B A}^{n}$ as $R_{B A} \omega_{3}^{2}$. Add this vector in the opposite direction of $\mathbf{R}_{B A}$ to the other two vectors.
4. Compute the magnitude of \mathbf{A}_{B}^{n} as $R_{B} \omega_{4}^{2}$. Note that \mathbf{A}_{B}^{n} is in the opposite direction of $\mathbf{R}_{B O_{4}}$. Since \mathbf{A}_{B}^{n} itself appears with a negative sign in the acceleration equation, it should be added to the other vectors in the diagram as shown; i.e., head-to-tail.

Acceleration analysis

Solution

5. Since $\mathbf{A}_{B A}^{t}$ must be perpendicular to $\mathbf{R}_{B A}$, draw a line perpendicular to $\mathbf{R}_{B A}$ in anticipation of adding $\mathbf{A}_{B A}^{t}$ to the diagram.
6. Since \mathbf{A}_{B}^{t} must be perpendicular to $\mathbf{R}_{B O_{4}}$, draw a line perpendicular to $\mathbf{R}_{\mathrm{BO}_{4}}$ closing (completing) the polygon.
7. Construct vectors $\mathbf{A}_{B A}^{t}$ and \mathbf{A}_{B}^{t} on the polygon.
8. Determine the magnitude of $\mathbf{A}_{B A}^{t}$ from the polygon. Compute α_{3} as $\alpha_{3}=A_{B A}^{t} / R_{B A}$ (in this diagram it is CW).
9. Determine the magnitude of \mathbf{A}_{B}^{t} from the polygon. Compute α_{4} as $\alpha_{4}=A_{B}^{t} / R_{B O_{4}}$ (in this diagram it is CCW).

Acceleration analysis

Solution

$$
\begin{gathered}
\mathbf{R}_{A O_{2}}+\mathbf{R}_{B A}-\mathbf{R}_{B O_{2}}=\mathbf{0} \\
\mathbf{V}_{A}+\mathbf{V}_{B A}-\mathbf{V}_{B}=\mathbf{0} \\
\mathbf{A}_{A}+\mathbf{A}_{B A}-\mathbf{A}_{B}=\mathbf{0}
\end{gathered}
$$

$$
\begin{gathered}
\mathbf{A}_{A}^{n}+\mathbf{A}_{A}^{t}+\mathbf{A}_{B A}^{n}+\mathbf{A}_{B A}^{t}-\mathbf{A}_{B}^{s}=\mathbf{0} \\
-\omega_{2}^{2} \mathbf{R}_{A O_{2}}+\alpha_{2} \breve{\mathbf{R}}_{A O_{2}}-\omega_{3}^{2} \mathbf{R}_{B A}+\alpha_{3} \breve{\mathbf{R}}_{B A}-\mathbf{A}_{B}^{s}=\mathbf{0}
\end{gathered}
$$

Acceleration analysis

Solution

1. Select a point in a convenient position as the reference for zero acceleration, O_{A}.
2. Compute $A_{A}^{n}=R_{A O_{2}} \omega_{2}^{2}$. From O_{V} construct \mathbf{A}_{A}^{n} in the opposite direction of $\mathbf{R}_{A O_{2}}$.
3. Compute $A_{A}^{t}=R_{A O_{2}} \alpha_{2}$. The direction of \mathbf{A}_{A}^{t} is determined by rotating $\mathbf{R}_{A O_{2}} 90^{\circ}$ in the direction of α_{2}. Add this vector to the diagram.

4. Compute $A_{B A}^{n}=R_{B A} \omega_{3}^{2}$. Construct $\mathbf{A}_{B A}^{n}$ in the opposite direction of $\mathbf{R}_{B A}$.
5. $\mathbf{A}_{B A}^{t}$ must be perpendicular to $\mathbf{R}_{B A}$. Draw a line perpendicular to $\mathbf{R}_{B A}$ in anticipation of adding $\mathbf{A}_{B A}^{t}$ to $\mathbf{A}_{B A}^{n}$.
6. From O_{A} draw a line parallel to the sliding axis. \mathbf{A}_{B} must reside on this line.

Acceleration analysis

Solution

7. Construct vectors $\mathbf{A}_{B A}^{t}$ and \mathbf{A}_{B}.
8. Determine the magnitude of $\mathbf{A}_{B A}^{t}$. Compute α_{3} as $\alpha_{3}=A_{B A}^{t} / R_{B A}$. Determine the direction of α_{3} (in this example it is CCW).
9. Determine the magnitude of \mathbf{A}_{B} from the polygon. The direction in this example is to the left.

Acceleration analysis

$$
r(t)=S(t) U_{\theta}(t)
$$

Derive with respect to time

$$
\dot{r}(t)=\dot{S} U_{\theta}+S \omega \dot{U}_{\theta}
$$

Derive another time with respect to
 time to find the acceleration

$$
\begin{aligned}
& \ddot{r}(t)=\ddot{S} U_{\theta}+\dot{S} \omega \dot{U}_{\theta}+\dot{S} \omega \dot{U}_{\theta}+S\left(\alpha \dot{U}_{\theta}+\omega^{2} \ddot{U}_{\theta}\right) \\
& \text { But } \ddot{U}_{\theta}(t)=-U_{\theta}(t)
\end{aligned}
$$

Rearrange the terms

$$
\ddot{r}(t)=\left(\ddot{S}-S \omega^{2}\right) U_{\theta}+(2 \dot{S} \omega+S \alpha) \dot{U}_{\theta}
$$

Acceleration analysis

4-bar mechanism

$>$ For the 4-bar mechanism, the length of links are constant and so:

$$
\ddot{S} \text { and } \dot{S}=0
$$

And the equation for acceleration become

$$
\ddot{r}(t)=-\left(S \omega^{2}\right) U_{\theta}+(S \alpha) \dot{U}_{\theta}=(S \alpha) \dot{U}_{\theta}-\left(S \omega^{2}\right) U_{\theta}
$$

\Rightarrow As shown in pervious chapters we can find the position and velocity analysis to 4-bar mech. And in this section we will find the acceleration analysis by adding new input which is α_{2} and new unknown and they are α_{3} and α_{4}

Acceleration analysis

4-bar mechanism

$>$ To apply acceleration analysis on 4-bar mechanism, we derive the loop closure equation

$$
\left[d_{2} \alpha_{2} \dot{U}_{\theta_{2}}-d_{2} \omega_{2}^{2} U_{\theta_{2}}\right]+\left[d_{3} \alpha_{3} \dot{U}_{\theta_{3}}-d_{3} \omega_{3}^{2} U_{\theta_{3}}\right]=\left[d_{4} \alpha_{4} \dot{U}_{\theta_{4}}-d_{4} \omega_{4}^{2} U_{\theta_{4}}\right]
$$

$>$ Dot product both sides by $\mathrm{U}_{\theta 3}$ to eliminate $\boldsymbol{\alpha}_{\mathbf{3}}$

$$
\begin{aligned}
& d_{2} \alpha_{2} \sin \left(\theta_{3}-\theta_{2}\right)-d_{2} \omega_{2}^{2} \cos \left(\theta_{3}-\theta_{2}\right)-d_{3} \omega_{3}^{2} \\
& =d_{4} \alpha_{4} \sin \left(\theta_{3}-\theta_{4}\right)-d_{4} \omega_{4}^{2} \cos \left(\theta_{3}-\theta_{4}\right)
\end{aligned}
$$

$>$ Solve for α_{4} :

$$
\alpha_{4}=\frac{d_{2} \alpha_{2} \sin \left(\theta_{3}-\theta_{2}\right)-d_{2} \omega_{2}^{2} \cos \left(\theta_{3}-\theta_{2}\right)-d_{3} \omega_{3}^{2}+d_{4} \omega_{4}^{2} \cos \left(\theta_{3}-\theta_{4}\right)}{d_{4} \sin \left(\theta_{3}-\theta_{4}\right)}
$$

Acceleration analysis

4-bar mechanism

$>$ Dot product both sides by $\mathbf{U}_{\boldsymbol{\theta 4}}$ to eliminate $\boldsymbol{\alpha}_{4}$

$$
\begin{aligned}
& d_{2} \alpha_{2} \sin \left(\theta_{4}-\theta_{2}\right)-d_{2} \omega_{2}^{2} \cos \left(\theta_{4}-\theta_{2}\right)+d_{3} \alpha_{3} \sin \left(\theta_{4}-\theta_{3}\right)-d_{3} \omega_{3}^{2} \cos \left(\theta_{4}-\theta_{3}\right) \\
& =-d_{4} \omega_{4}^{2}
\end{aligned}
$$

$>$ Solve for α_{3} :

$$
\alpha_{3}=\frac{-d_{2} \alpha_{2} \sin \left(\theta_{4}-\theta_{2}\right)+d_{2} \omega_{2}^{2} \cos \left(\theta_{4}-\theta_{2}\right)+d_{3} \omega_{3}^{2} \cos \left(\theta_{4}-\theta_{3}\right)-d_{4} \omega_{4}^{2}}{d_{3} \sin \left(\theta_{4}-\theta_{3}\right)}
$$

Acceleration analysis

Slider crank mechanism

$>$ For slider crank mechanism the input is $\alpha 2$ and the outputs will be:

$$
\ddot{S} \text { and } \alpha_{3}
$$

The L.C.E is

$$
d_{2} U_{\theta 2}+d_{3} U_{\theta 3}+a U_{\alpha+90}=S U_{\alpha}
$$

$>$ Derive twice with respect to time

$$
\left[d_{2} \alpha_{2} \dot{U}_{\theta_{2}}-d_{2} \omega_{2}^{2} U_{\theta_{2}}\right]+\left[d_{3} \alpha_{3} \dot{U}_{\theta_{3}}-d_{3} \omega_{3}^{2} U_{\theta_{3}}\right]=\ddot{S} U_{\alpha}
$$

$>$ Dot product both sides by \mathbf{U}_{93} to eliminate $\boldsymbol{\alpha}_{\mathbf{3}}$

$$
d_{2} \alpha_{2} \sin \left(\theta_{3}-\theta_{2}\right)-d_{2} \omega_{2}^{2} \cos \left(\theta_{3}-\theta_{2}\right)-d_{3} \omega_{3}^{2}=\ddot{S} \cos \left(\theta_{3}-\alpha\right)
$$

Acceleration analysis

Slider crank mechanism

>Solve for \ddot{S}

$$
\ddot{S}=\frac{d_{2} \alpha_{2} \sin \left(\theta_{3}-\theta_{2}\right)-d_{2} \omega_{2}^{2} \cos \left(\theta_{3}-\theta_{2}\right)-d_{3} \omega_{3}^{2}}{\cos \left(\theta_{3}-\alpha\right)}
$$

$>$ Dot product both sides by \mathbf{U}^{\bullet} to eliminate \ddot{S}

$$
\begin{gathered}
d_{2} \alpha_{2} \cos \left(\theta_{2}-\alpha\right)-d_{2} \omega_{2}^{2} \sin \left(\theta_{2}-\alpha\right)+d_{3} \alpha_{3} \cos \left(\theta_{3}-\alpha\right)-d_{3} \omega_{3}^{2} \sin \left(\theta_{3}-\alpha\right)=0 \\
\Rightarrow \alpha_{3}=\frac{d_{2} \omega_{2}^{2} \sin \left(\theta_{2}-\alpha\right)+d_{3} \omega_{3}^{2} \sin \left(\theta_{3}-\alpha\right)-d_{2} \alpha_{2} \cos \left(\theta_{2}-\alpha\right)}{d_{3} \cos \left(\theta_{3}-\alpha\right)}
\end{gathered}
$$

