



For a known four-bar mechanism, in a given configuration and known velocities, and a given angular acceleration of the crank,  $\alpha_2$  (say CCW), construct the acceleration polygon. Determine  $\alpha_3$  and  $\alpha_4$ .



Solution

For the position vector loop equation:

$$R_{AO2} + R_{BA} - R_{BO4} - R_{O4O2} = 0 --- (1)$$

the velocity equation is

 $V_{AO2} + V_{BA} - V_{BO4} = 0 --- (2)$ 



#### Solution

The acceleration equation is obtained from the time derivative of the velocity equation as:

$$\mathbf{A}_{A} + \mathbf{A}_{BA} = \mathbf{A}_{B}$$

Since  $R_{AO2}$ ,  $R_{BA}$ , and  $R_{BO2}$  are moving vectors with constant lengths, their acceleration vectors have normal and tangential components:

$$\mathbf{A}_{A}^{n} + \mathbf{A}_{A}^{t} + \mathbf{A}_{BA}^{n} + \mathbf{A}_{BA}^{t} - \mathbf{A}_{B}^{n} - \mathbf{A}_{B}^{t} = \mathbf{0}$$
$$-\omega_{2}^{2}\mathbf{R}_{AO_{2}} + \alpha_{2}\breve{\mathbf{R}}_{AO_{2}} - \omega_{3}^{2}\mathbf{R}_{BA} + \alpha_{3}\breve{\mathbf{R}}_{BA} - (-\omega_{4}^{2}\mathbf{R}_{BO_{4}}) - \alpha_{4}\breve{\mathbf{R}}_{BO_{4}} = \mathbf{0}$$

Now,  $\omega_2$ ,  $\omega_3$ ,  $\omega_4$  and  $\alpha_2$  are known, so the components  $A_A^n$ ,  $A_A^t$ ,  $A_{BA}^n$  and  $A_B^n$  are known and can be drawn directly



2

С

h

i

n

e

r

y

# Acceleration analysis

Solution



Rearrange the loop equation to be seem as follow

$$-\omega_2^2 \mathbf{R}_{AO_2} + \alpha_2 \breve{\mathbf{R}}_{AO_2} - \omega_3^2 \mathbf{R}_{BA} - (-\omega_4^2 \mathbf{R}_{BO_4}) + \alpha_3 \breve{\mathbf{R}}_{BA} - \alpha_4 \breve{\mathbf{R}}_{BO_4} = 0$$

#### Drawing procedures:

- Select a point in a convenient position as the reference for zero acceleration. Name this point O<sub>A</sub> (origin of accelerations).
- 2. Compute the magnitude of  $\mathbf{A}_{A}^{n}$  as  $R_{AO_{2}}\omega_{2}^{2}$ . From
  - $O_V$  construct vector  $\mathbf{A}_A^n$  in the opposite direction of  $\mathbf{R}_{AO_2}$ .
- 3. Compute the magnitude of  $\mathbf{A}_{A}^{t}$  as  $R_{AO_{2}}\alpha_{2}$ . The direction of  $\mathbf{A}_{A}^{t}$  is determined by rotating  $\mathbf{R}_{AO_{2}}$ 90° in the direction of  $\alpha_{2}$ . Add this vector to  $\mathbf{A}_{A}^{n}$ . Note that the sum of  $\mathbf{A}_{A}^{n}$  and  $\mathbf{A}_{A}^{t}$  is  $\mathbf{A}_{A}$ .



y

### Acceleration analysis

Solution

- 3. Compute the magnitude of  $\mathbf{A}_{BA}^{n}$  as  $R_{BA}\omega_{3}^{2}$ . Add this vector in the opposite direction of  $\mathbf{R}_{BA}$  to the other two vectors.
- 4. Compute the magnitude of  $\mathbf{A}_{B}^{n}$  as  $R_{B}\omega_{4}^{2}$ . Note that
  - $\mathbf{A}_{B}^{n}$  is in the opposite direction of  $\mathbf{R}_{BO_{4}}$ . Since

 $\mathbf{A}_{B}^{n}$  itself appears with a negative sign in the acceleration equation, it should be added to the other vectors in the diagram as shown; i.e., head-to-tail.





#### Solution

T

h

e

0

r

У

0

f

m

2

С

h

i

n

e

r

у

- 5. Since  $\mathbf{A}_{BA}^{t}$  must be perpendicular to  $\mathbf{R}_{BA}$ , draw a line perpendicular to  $\mathbf{R}_{BA}$  in anticipation of adding  $\mathbf{A}_{BA}^{t}$  to the diagram.
- 6. Since  $\mathbf{A}_{B}^{t}$  must be perpendicular to  $\mathbf{R}_{BO_{4}}$ , draw a line perpendicular to  $\mathbf{R}_{BO_{4}}$  closing (completing) the polygon.
- 7. Construct vectors  $\mathbf{A}_{BA}^{t}$  and  $\mathbf{A}_{B}^{t}$  on the polygon.
- 8. Determine the magnitude of  $\mathbf{A}_{BA}^{t}$  from the polygon. Compute  $\alpha_{3}$  as  $\alpha_{3} = A_{BA}^{t} / R_{BA}$  (in this diagram it is CW).
- 9. Determine the magnitude of  $\mathbf{A}_{B}^{t}$  from the polygon. Compute  $\alpha_{4}$  as  $\alpha_{4} = A_{B}^{t} / R_{BO_{4}}$  (in this diagram it is CCW).



A

 $\mathbf{A}_{BA}^{n}$ 



Т

h

e

0

r

y

0

f

m

a

С

h

i

n

e

r

У

 $-\omega_2^2 \mathbf{R}_{AO_2} + \alpha_2 \breve{\mathbf{R}}_{AO_2} - \omega_3^2 \mathbf{R}_{BA} + \alpha_3 \breve{\mathbf{R}}_{BA} - \mathbf{A}_B^s = \mathbf{0}$ 

#### Solution

T

h

e

0

r

у

0

f

m

2

С

h

i

n

e

r

у

- Select a point in a convenient position as the reference for zero acceleration, O<sub>A</sub>.
- 2. Compute  $A_A^n = R_{AO_2}\omega_2^2$ . From  $O_V$  construct  $\mathbf{A}_A^n$  in the opposite direction of  $\mathbf{R}_{AO_2}$ .
- 3. Compute  $A_A^t = R_{AO_2}\alpha_2$ . The direction of  $\mathbf{A}_A^t$  is determined by rotating  $\mathbf{R}_{AO_2}$  90° in the direction of  $\alpha_2$ . Add this vector to the diagram.
- 4. Compute  $A_{BA}^n = R_{BA}\omega_3^2$ . Construct  $\mathbf{A}_{BA}^n$  in the opposite direction of  $\mathbf{R}_{BA}$ .
- 5.  $\mathbf{A}_{BA}^{t}$  must be perpendicular to  $\mathbf{R}_{BA}$ . Draw a line perpendicular to  $\mathbf{R}_{BA}$  in anticipation of adding  $\mathbf{A}_{BA}^{t}$  to  $\mathbf{A}_{BA}^{n}$ .
- 6. From  $O_A$  draw a line parallel to the sliding axis.  $\mathbf{A}_B$  must reside on this line.



#### Solution

- 7. Construct vectors  $\mathbf{A}_{BA}^{t}$  and  $\mathbf{A}_{B}$ .
- 8. Determine the magnitude of  $\mathbf{A}_{BA}^{t}$ . Compute  $\alpha_{3}$  as  $\alpha_{3} = A_{BA}^{t} / R_{BA}$ . Determine the direction of  $\alpha_{3}$  (in this example it is CCW).
- 9. Determine the magnitude of  $A_B$  from the polygon. The direction in this example is to the left.



y

#### Using vector algebra

$$r(t) = S(t)U_{\theta}(t)$$

Derive with respect to time

$$\dot{r}(t) = \dot{S}U_{\theta} + S\omega \dot{U}_{\theta}$$

Derive another time with respect to time to find the acceleration



$$\ddot{r}(t) = \ddot{S}U_{\theta} + \dot{S}\omega\dot{U}_{\theta} + \dot{S}\omega\dot{U}_{\theta} + S(\alpha\dot{U}_{\theta} + \omega^{2}\ddot{U}_{\theta})$$
  
But  $\ddot{U}_{\theta}(t) = -U_{\theta}(t)$ 

Rearrange the terms

$$\ddot{r}(t) = (\ddot{S} - S\omega^2)U_{\theta} + (2\dot{S}\omega + S\alpha)\dot{U}_{\theta}$$



4-bar mechanism

➢ For the 4-bar mechanism, the length of links are constant and so:

 $\ddot{S}$  and  $\dot{S} = 0$ 

And the equation for acceleration become

$$\ddot{r}(t) = -(S\omega^2)U_{\theta} + (S\alpha)\dot{U}_{\theta} = (S\alpha)\dot{U}_{\theta} - (S\omega^2)U_{\theta}$$

As shown in pervious chapters we can find the position and velocity analysis to 4-bar mech. And in this section we will find the acceleration analysis by adding new input which is  $\alpha_2$  and new unknown and they are  $\alpha_3$  and  $\alpha_4$ 



#### 4-bar mechanism

➤To apply acceleration analysis on 4-bar mechanism, we derive the loop closure equation

$$\left[d_{2}\alpha_{2}\dot{U}_{\theta_{2}} - d_{2}\omega_{2}^{2}U_{\theta_{2}}\right] + \left[d_{3}\alpha_{3}\dot{U}_{\theta_{3}} - d_{3}\omega_{3}^{2}U_{\theta_{3}}\right] = \left[d_{4}\alpha_{4}\dot{U}_{\theta_{4}} - d_{4}\omega_{4}^{2}U_{\theta_{4}}\right]$$

> Dot product both sides by  $U_{\theta 3}$  to eliminate  $\alpha_3$ 

$$d_2\alpha_2\sin(\theta_3-\theta_2) - d_2\omega_2^2\cos(\theta_3-\theta_2) - d_3\omega_3^2$$
$$= d_4\alpha_4\sin(\theta_3-\theta_4) - d_4\omega_4^2\cos(\theta_3-\theta_4)$$

Solve for  $\alpha_4$ :

$$\alpha_{4} = \frac{d_{2}\alpha_{2}\sin(\theta_{3} - \theta_{2}) - d_{2}\omega_{2}^{2}\cos(\theta_{3} - \theta_{2}) - d_{3}\omega_{3}^{2} + d_{4}\omega_{4}^{2}\cos(\theta_{3} - \theta_{4})}{d_{4}\sin(\theta_{3} - \theta_{4})}$$



у

#### Acceleration analysis

4-bar mechanism

 $\succ$  Dot product both sides by **U**<sub>04</sub> to eliminate  $\alpha_4$ 

$$d_2\alpha_2\sin(\theta_4-\theta_2) - d_2\omega_2^2\cos(\theta_4-\theta_2) + d_3\alpha_3\sin(\theta_4-\theta_3) - d_3\omega_3^2\cos(\theta_4-\theta_3)$$
$$= -d_4\omega_4^2$$

Solve for  $\alpha_3$ :

$$\alpha_{3} = \frac{-d_{2}\alpha_{2}\sin(\theta_{4} - \theta_{2}) + d_{2}\omega_{2}^{2}\cos(\theta_{4} - \theta_{2}) + d_{3}\omega_{3}^{2}\cos(\theta_{4} - \theta_{3}) - d_{4}\omega_{4}^{2}}{d_{3}\sin(\theta_{4} - \theta_{3})}$$



Slider crank mechanism

 $\succ$  For slider crank mechanism the input is  $\alpha 2$  and the outputs will be:  $\ddot{S}$  and  $\alpha_3$ 

The L.C.E is

$$d_2 U_{\theta 2} + d_3 U_{\theta 3} + a U_{\alpha+90} = S U_{\alpha}$$

Derive twice with respect to time

$$\left[d_2\alpha_2\dot{U}_{\theta_2} - d_2\omega_2^2U_{\theta_2}\right] + \left[d_3\alpha_3\dot{U}_{\theta_3} - d_3\omega_3^2U_{\theta_3}\right] = \ddot{S}U_{\alpha}$$

 $\succ$  Dot product both sides by **U**<sub>03</sub> to eliminate  $\alpha_3$ 

$$d_2\alpha_2\sin(\theta_3-\theta_2)-d_2\omega_2^2\cos(\theta_3-\theta_2)-d_3\omega_3^2=\ddot{S}\cos(\theta_3-\alpha)$$



Slider crank mechanism

 $\succ$ Solve for  $\ddot{S}$ 

$$\ddot{S} = \frac{d_2\alpha_2\sin(\theta_3 - \theta_2) - d_2\omega_2^2\cos(\theta_3 - \theta_2) - d_3\omega_3^2}{\cos(\theta_3 - \alpha)}$$

> Dot product both sides by  $U_{\alpha}^{*}$  to eliminate  $\ddot{S}$ 

$$d_{2}\alpha_{2}\cos(\theta_{2}-\alpha) - d_{2}\omega_{2}^{2}\sin(\theta_{2}-\alpha) + d_{3}\alpha_{3}\cos(\theta_{3}-\alpha) - d_{3}\omega_{3}^{2}\sin(\theta_{3}-\alpha) = 0$$
$$\Rightarrow \alpha_{3} = \frac{d_{2}\omega_{2}^{2}\sin(\theta_{2}-\alpha) + d_{3}\omega_{3}^{2}\sin(\theta_{3}-\alpha) - d_{2}\alpha_{2}\cos(\theta_{2}-\alpha)}{d_{3}\cos(\theta_{3}-\alpha)}$$